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RHEOLOGY OF POL YEmYLENE AT HIGH PRESSURES 

Introduction 

Recently interest has been expressed in the effect of mean stress on me
chanical properties of polymers (l-5). For a great many materials, particu
larly the metals, yielding can be described quite accurately solely as a func
tion of the shear stresses, e.g., the critical resolved shear, Tresca, and Von 
Mises criteria (6,7). Yielding in such materials does not depend on the hydro
static component of the stress. Conversely, failure in some materials is known 
to be highly dependent on the mean component of stress. Information re
lating the dependence of mechanical properties on the hydrostatic component 
of applied stress should be useful in developing and understanding the mechan
isms of plastic deformation and in the development of failure criteria. 

Mechanical properties of most materials also shows some dependence on 
effects such as time and rate of loading and/or strain. These effects are per
haps most pronounced in polymers such as plastics and elastomers. These ma
terials are generally classed as viscoelastic although most do not obey the 
formal mathematics of linear viscoelasticity (9). In studying the effect of 
pressure on the flow porperties of polymers, it appears, therefore, that it 
would also be helpful to investigate time effects. 

A few years ago (1964-1965) the authors were interested in fmding a ma
terial for use in seals suitable for long-term usage under high hydrostatic pres
sure. To obtain this information a study was undertaken of the flow proper
ties of polymers at high pressure. From this information it was expected to 
be able to predict the useful life of seals. The material studied most thor
oughly (and eventually used most extensively for seals) was polyethylene. 
With the recent upsurge in interest in pressure effects in polymers, it occurred 
to us that these results might be of more basic and general interest. there
fore, this letter was prepared. 

Experimental EqUipment and Techniques 

The high-pressure equipment used is similar in all respects to that described 
elsewhere (10). It consisted of a thick-walled high pressure cylinder providing 
a working space 1 in. in diameter and approximately 5 to 6 in. in length de
pending on pressure. The pressure was developed and maintained by a press 
acting on a piston. The pressure media was technical grade kerosene. 

Both relaxation and creep tests were conducted on the polyethylene. To 
measure the load, small cantilever load cells were constructed from tool steel 
and resistance strain gages. Output of the load cell was corrected for pressure 
effects that had previously been determined to be small (11,12). Displace-
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ment was measured with a LVDT that had likewise been calibrated under pres
sure. We would estimate the error of both load and displacement measure
ments to be less than 5 per cent. 

The tensile load, superimposed. on the hydrostatic pressure loading, was 
applied to the sample by springs or lead weights. Since the pressure has only 
a very slight effect on the elastic modulus of steel (-I % at 10 kbar), the 
spring constant varies only slightly with pressure. As a result, it was possible 
in the creep tests to maintain constant load to within a few per cent as deter
mined by the load cell. 

The load was held from the sample while assembly in the pressure vessel 
and during the period preceding the actual testing by small fuse wires. After 
assembly and the desired pressure had been obtained, the load was applied by 
"fusing" this wire with a surge of electric current. In this way the "constant" 
load was applied for the creep tests or the samples elongated to mechanical 
stops for the flxed displacement or relaxation tests in a small fraction of a 
second. Load and displacement were recorded versus time on a Leeds and 
Northrup dual-channel speedomax recorder. 

Two types of samples were used: 
1) Bulk samples in the form of beams with three-point loading constructed 

from bulk low density polyethylene 
2) Tensile specimens fabricated from polyethylene fIlm (0.002 in. thick). 

Both were commercial grade material purchased locally. The stress distribu
tion for beams is more complex, of course, making the viscoelastic analysis 
more ~imcult. This inCidentally would not present much of a problem for a 
linear viscoelastic material. However, since polyethylene does not fall in this 
class, we will report here only the results on the tensile tests. Qualitatively, at 
least, the phenomena were similar in the two types of tests. 

Experimental Results 

Consider first the creep tests of polyethylene fIlm. Samples were cut and 
the apparent compliance computed by the equation 

_ W/dT 
l/C(t) - 6£(t)/Q (1) 

where W is the applied constant load, d is the sample width, T is the sample thick
ness, £ is the sample length, and 6£(t) is the sample extension_ The results of 
six creep samples tested at several hydrostatic pressures is shown in Figure I. 
Referring to Figure 1, it can be observed that as the mean stress is increased, 
the compliance was significantly decreased. This observation applies to both 
the initial and final values of compliance. Furthermore, creep rates were gen
erally reduced at higher values of mean stress. 

Stress relaxation tests produced similar but slightly different results. As 
with the creep tests the apparent modulus was determined from sample geo-
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Fig. 1. Compliance of polyethylene as a function of hydrostatic 
pressure as determined from creep tests. 
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Fig. 2. Modulus of polyetllylene vs. hydrostatic pressure as 
determined from stress relaxation tests. 

metry ancl the measured sample force by the equation 

E(t) = W(t)/dT 
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where 6£ is the very rapidly applied sample extension (held constant for the 
test duration) and Wet) is the measured sample force. The results of five 
stress relaxation tests at several hydrostatic pressures are shown in Figure 2. 

Referring to Figure 2, it will be noted that the apparent relaxation modu
lus change with pressure is smaller than the analogous results from Figure I, 
i.e., the reciprocal of the compliance. The general trends in the creep and re
laxation tests are the same, i.e., the hydrostatic pressure does increase the gen
eral stiffness and viscosity of the material. It might be hypothesized that part 
of the difference in the two tests results from the method of loading. In the 
creep tests, of course, a constant load is suddenly applied while in relaxation 
tests a sudden displacement was applied to the sample. This later displace
ment was applied in a very small fraction of a second and, consequently, at 
these pressures the sample could have behaved like a "glass." If this were the 
case, instantaneously , very high stresses could have resulted and as a conse
quence some structural damage and morphological changes could have oc
curred. Unfortunately, the recorder used to measure the stress had a response 
time of greater than one second and so was incapable of monitoring such re
sponse. 

In conclusion, the mean stress does drastically effect the rheology of the 
polyethylene. As far as the original purpose of the study goes, pressure does 
indeed enhance the "strength" of polyethylene for use as a high-pressure seal. 
Subsequent experience with polyethylene seals (both of unsupported and 
wedge type) substantiated this effect. In fact, sealing at low pressures proved 
to be more of a problem than excessive seal flow at pressures to 10 kbar. 

This work was supported by the National Science Foundation. 
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